70 research outputs found

    Analyzing Adaptive Parameter Landscapes in Parameter Adaptation Methods for Differential Evolution

    Full text link
    Since the scale factor and the crossover rate significantly influence the performance of differential evolution (DE), parameter adaptation methods (PAMs) for the two parameters have been well studied in the DE community. Although PAMs can sufficiently improve the effectiveness of DE, PAMs are poorly understood (e.g., the working principle of PAMs). One of the difficulties in understanding PAMs comes from the unclarity of the parameter space that consists of the scale factor and the crossover rate. This paper addresses this issue by analyzing adaptive parameter landscapes in PAMs for DE. First, we propose a concept of an adaptive parameter landscape, which captures a moment in a parameter adaptation process. For each iteration, each individual in the population has its adaptive parameter landscape. Second, we propose a method of analyzing adaptive parameter landscapes using a 1-step-lookahead greedy improvement metric. Third, we examine adaptive parameter landscapes in PAMs by using the proposed method. Results provide insightful information about PAMs in DE.Comment: This is an accepted version of a paper published in the proceedings of GECCO 202

    Evaluation of an entraining droplet activation parameterization using in situ cloud data

    Get PDF
    This study investigates the ability of a droplet activation parameterization (which considers the effects of entrainment and mixing) to reproduce observed cloud droplet number concentration (CDNC) in ambient clouds. Predictions of the parameterization are compared against cloud averages of CDNC from ambient cumulus and stratocumulus clouds sampled during CRYSTAL‐FACE (Key West, Florida, July 2002) and CSTRIPE (Monterey, California, July 2003), respectively. The entrainment parameters required by the parameterization are derived from the observed liquid water content profiles. For the cumulus clouds considered in the study, CDNC is overpredicted by 45% with the adiabatic parameterization. When entrainment is accounted for, the predicted CDNC agrees within 3.5%. Cloud‐averaged CDNC for stratocumulus clouds is well captured when entrainment is not considered. In all cases considered, the entraining parameterization compared favorably against a statistical correlation developed from observations to treat entrainment effects on droplet number. These results suggest that including entrainment effects in the calculation of CDNC, as presented here, could address important overprediction biases associated with using adiabatic CDNC to represent cloud‐scale average values

    Adaption of Operator Probabilities in Genetic Programming

    Full text link
    Abstract. In this work we tried to reduce the number of free parameters within Genetic Programming without reducing the quality of the results. We developed three new methods to adapt the probabilities, different genetic operators are applied with. Using two problems from the areas of symbolic regression and classification we showed that the results in these cases were better than randomly chosen parameter sets and could compete with parameter sets chosen with empirical knowledge.

    An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap

    Get PDF
    A multi-platform field measurement campaign involving aircraft and balloons took place over West Africa between 26 July and 25 August 2006, in the frame of the concomitant AMMA Special Observing Period and SCOUT-O3 African tropical activities. Specifically aiming at sampling the upper troposphere and lower stratosphere, the high-altitude research aircraft M55 Geophysica was deployed in Ouagadougou (12.3° N, 1.7° W), Burkina Faso, in conjunction with the German D-20 Falcon, while a series of stratospheric balloon and sonde flights were conducted from Niamey (13.5° N, 2.0° E), Niger. The stratospheric aircraft and balloon flights intended to gather experimental evidence for a better understanding of large scale transport, assessing the effect of lightning on NOx production, and studying the impact of intense mesoscale convective systems on water, aerosol, dust and chemical species in the upper troposphere and lower stratosphere. The M55 Geophysica carried out five local and four transfer flights between southern Europe and the Sahel and back, while eight stratospheric balloons and twenty-nine sondes were flown from Niamey. These experiments allowed a characterization of the tropopause and lower stratosphere of the region. We provide here an overview of the campaign activities together with a description of the general meteorological situation during the flights and a summary of the observations accomplished
    • 

    corecore